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What is this all about

judgment aggregation (JA) has two problems:

aggregation functions that satisfy a desirable set of
properties do not exist

aggregation operators that exist are manipulable

the question is: is lying, cheating and manipulation
really that bad ?
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white lie
English

Noun

white lie (plural white lies) L< ™y Wikipedia has an article on:
1. (idiomatic) A deliberate, untrue statement which does no harm or is intended to produce a ' 1) White lie

favorable result.

= 2008, Jacqueline Stenson, "The Whole Truth: When is it okay to lie to your kids? &," Newsweek, 15 Jul.,

An occasional little white lie such as Weston's probably won't cause any lasting damage. And at times, telling the truth — particularly
the whole truth to a child who's not at an age to handle it—may do more harm than good, they say.
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the colloquial term “white lies”
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outcome for the agent who lies
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White Manipulability

the colloquial term “white lies”

manipulation - lying with the intent to improve the
outcome for the agent who lies

white manipulation - lying with the intent to improve
the outcome for all the agents involved
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In the rest of the talk

introduce the basic concepts of judgment aggregation
redefine the judgment aggregation function

introduce in JA: scoring functions, social welfare notions
define white manipulation

initial results

conclusions
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Judgment Aggregation

how individual judgments on logically connected issues
can be aggregated into a collective judgment on the
same Issues

hiring committee example with rule ' = < (a A b)

a = X is good at teaching | b = X is good at research

prof. A Yes no
prof. B Yes Yes
prof. C no yes
Majority yes yes
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Judgment Aggregation

how individual judgments on logically connected issues
can be aggregated into a collective judgment on the
same Issues

hiring committee example with rule ' = < (a A b)
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Judgment Aggregation

how individual judgments on logically connected issues
can be aggregated into a collective judgment on the
same Issues

hiring committee example with rule ' = < (a A b)

a = X is good at teaching | b = X is good at research

prof. A Yes no
prof. B yes yes
prof. C no Yes
Majority yes yes

f : profiles — judgment sets
Impasse
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Judgment Aggregation

how individual judgments on logically connected issues
can be aggregated into a collective judgment on the
same Issues

hiring committee example with rule z < (a A b):

a = X is good at teaching | b = X is good at research

prof. A Yes no
prof. B Yes Yes
prof. C no yes no
Majority yes yes no

judgment aggregation functions are not manipulable if
they satisfy independence and (weak) monotonicity[1]
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Judgment Aggregation

how individual judgments on logically connected issues
can be aggregated into a collective judgment on the
same Issues

hiring committee example with rule z < (a A b):

a = X is good at teaching | b = X is good at research

prof. A yes no
prof. B yes yes
prof. C no YEes
Majority yes yes

distance based merging is manipulable [4]
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The ideas are ...

impasse | is in the set of possible outputs of the
aggregation function, but not part of any profile

assume that agents have preferences over outputs and
neither of the agents prefers the output |

scoring functions determine preference ordering over
the elements of the set of possible outputs of the
aggregation function
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JA function & scoring functions

JA function we defined as f:Q— @ U]}
example we work with - quota rule f*

score function we define as a function that, given a

judgment set, scores all other possible outcomes based
on that judgment set

we work with examples of distance based scoring
functions: HS, : ® — (&) — N)
VS,:® — (&} — N)
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JA function & scoring functions

JA function we defined as f:Q— @ U]}

4

w- A \..L ‘ -L‘l/

VS,:® — (&} — N)
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JA function & scoring functions

JA function we defined as f:Q— @ U]}

£ v

.

Definition. [Manipulation| Let s be a scoring function.
An aggregation function f is manipulable if and only if
there exists a judgment profile w € ) and an agent 1
such that f(w) <¢ f(w'), where w’ € Q is some i-variant
of w.

w-—/ L J = \ R

VS,:® — (&} — N)
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Social weltare notions in JA

using a scoring function, a preference profile can be
built from a judgment profile

having a preference profile, social welfare notions can
be applied to JA

Utilitarian social welfare
USWS(w)( ) — Z?:l 8(90)(902)

Egalitarian social welfare
ESW (w)(p) = maxis(¢)(vi) | @i € @}
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Social weltare notions in JA

using a scoring function, a preference profile can be
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N\
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Social weltare notions in JA

using a scoring function, a preference profile can be
built from a judgment profile

\.

Definition. |White manipulability| Let SV be a social welfare
function and s a scoring function. An aggregation function f

is white manipulable if and only if there exists an agent ¢ and a
judgment profile w € 2 such that f(w) <7 f(w') and

SW(f(w)) < SW(f(w')), where w’ € € is some i-variant of w.

N
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Hiring example revisited

X <(a A\ b)
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Hiring example revisited

X <(a A\ b)

20 possible
profiles
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Hiring example revisited

o

X <(a A\ b)

(prof. A) ¢

(prof. B) (s

(prof. C) 3

P4

(0,1,
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Coordinated white manipulation

one agent can white manipulate alone and improve
the social welfare

the group can agree on how to manipulate and this
improve the social welfare

idea: negotiate on how to lie

example: fallback bargaining
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Fallback Bargaining

introduced by S.J. Brams and D.M. Kilgour (1998)(5]

bargainers “fallback” on less and less preferred
alternatives

b
M = C
a

=1 d=2 d=3 d=14

hiring example:

100 000 111,010
M" = 111 100,010 000
010 000 111,100 |
d=1 d=2 d=3 d=A4
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Fallback Bargaining & WM

if | is the least preferred outcome, it will not be the
result of the bargaining (for both scoring functions)

for r=n, the utilitarian social welfare of the bargaining
output is the highest
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Our contribution

treat the inconsistency as an impasse and the impasse
as a possible outcome

introduce the idea of manipulability as a positive
concept

extend the judgment aggregation framework with an
automatically built preference profile

introduce social welfare concepts in the judgment
aggregation framework
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Future work

analyze further the fallback bargaining for other social
welfare functions

analyze other agreement reaching protocols for the use
of white manipulation

analyze profiles with different preferences regarding
the impasse

redefine manipulation concepts in terms of coalition
manipulation concepts

extend the JA framework towards game theory
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